Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrodew

نویسندگان

  • Egill Skúlason
  • Gustav S. Karlberg
  • Jan Rossmeisl
  • Thomas Bligaard
  • Jeff Greeley
  • Hannes Jónsson
  • Jens K. Nørskov
چکیده

We present results of density functional theory calculations on a Pt(111) slab with a bilayer of water, solvated protons in the water layer, and excess electrons in the metal surface. In this way we model the electrochemical double layer at a platinum electrode. By varying the number of protons/electrons in the double layer we investigate the system as a function of the electrode potential. We study the elementary processes involved in the hydrogen evolution reaction, 2(H + e ) H2, and determine the activation energy and predominant reaction mechanism as a function of electrode potential. We confirm by explicit calculations the notion that the variation of the activation barrier with potential can be viewed as a manifestation of the Brønsted–Evans–Polanyi-type relationship between activation energy and reaction energy found throughout surface chemistry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode.

We present results of density functional theory calculations on a Pt(111) slab with a bilayer of water, solvated protons in the water layer, and excess electrons in the metal surface. In this way we model the electrochemical double layer at a platinum electrode. By varying the number of protons/electrons in the double layer we investigate the system as a function of the electrode potential. We ...

متن کامل

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

Structure of water layers on hydrogen-covered Pt electrodes

The structure of water layers above hydrogen-covered Pt(111) surfaces at room temperature has been studied by ab initio molecular dynamics simulations based on periodic density functional theory calculations. Fully hydrogen-covered Pt(111) with additionally either a hydrogen vacancy or another hydrogen adatom have been considered. The resulting structures have been analyzed in detail as a funct...

متن کامل

Computational Study of Electrochemical CO2 Reduction at Transition Metal Electrodes

A detailed understanding of the mechanism of electrochemical reduction of CO2 to form hydrocarbons can help design improved catalysts for this important reaction. Density functional theory calculations were used here to model the various elementary steps in this reaction on transition metal surfaces, in particular Cu(111) and Pt(111). The minimum energy paths for sequential protonation by eithe...

متن کامل

CO2 reduction at transition metal electrodes

A detailed understanding of the mechanism of electrochemical reduction of CO2 to form hydrocarbons can help design improved catalysts for this important reaction. Density functional theory calculations were used here to model the various elementary steps in this reaction on transition metal surfaces, in particular Cu(111) and Pt(111). The minimum energy paths for sequential protonation by eithe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007